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16, 6300 Giessen, Germany 
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Abstnd. We investigate the parallel dynamics of the neural network with the pseudoinverse 
coupling matrix. Based on an exact dynamic theory we develop an approximate treatment 
for long timescales. The temporal development of the overlap, of correlation functions and 
of the remanent magnetization are investigated. We present re~ults for deterministic and 
stochastic dynamics. Large-scale numerical simulations supplement our analytical findings. 

1. Introduction 

Neural networks are now regarded as a promising tool to extend the capabilities of 
present-day computers. After the revived interest into these large arrays of multiple- 
connected, simple processing units due to the work of Hopfield [I], a lot of different 
network structures have been put forward [Z, 31. One of the simplest types of neural 
networks consists of two-state neurons Si = * I ,  ( i  = I , .  . . , N ) ,  ('spins'), which change 
their intemal states according to a prescribed update rule. The neurons are connected 
to each other via the synaptic coupling matrix .IQ, in which the knowledge of the neural 
network is coded. 

One possible update rule-and the one we will be primarily concerned with in this 
paper-is the synchronous, parallel update of the neurons Si at discrete time intervals 
[4J, defined by 

S,(t+ I )  =sgn(h,(r)) (1) 

where 

are the intemal fields at time r. Another type of dynamics is the asynchronous update, 
where the spins are updated according to ( I ) ,  but in a fixed or random sequential 
order. Some results for this update will be given in this paper too. 

If the synaptic couplings J, of the neural network are chosen properly, the network 
is able to learn a number of patterns t r  = *I, ( i  = 1,. . . , N; Y =  I , .  . . , p ) .  Then, under 
the dynamics defined by (1). the network can restore noisy, corrupted input images 
of the ieamed pattern. i t  functions as an autoassociative memory. 

We will consider in this paper the network with the pseudoinverse coupling matrix 
[ 5 ] .  The pseudoinverse matrix is easy and fast to calculate, directly [6] or iteratively 
[7,8]. It is a projection operator into the space of the leamed pattern. The coupling 
matrix Ji,, with zeroed diagonal element, stabilizes the pattem up to a storage ratio of 
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a = p / N  = 1. We have, for N+m, 
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J& = ( 1  -a)(?.  
j 

The dynamics of the network will be described in terms of the overlap between 
the state S i ( t )  of the neurons at time t and a pattern (7: 

I 
m ( t ) = - x  ( f S j ( t ) .  

Ni 
Clearly, m = 1 is equivalent to Sj = (7 for all i. 

The actual performance of the network will depend on the value of the start overlap 
m(0) at time t = O  and on the storage ratio n of the network. Starting from an initially 
noisystate m(0)<1, the network can, for f+m: 

(i) recognize the pattern, m(t)+l ;  
(ii) partly restore the pattern, m(0)  < m ( t )  < 1; or 
(iii) fail to recognize the pattern, m ( t )  < m(0). 

Usually the overlap assumes a continuum of values, depending on the initial conditions. 
This is caused by metastable states and 2-cycles, which trap the network dynamically 
before reaching the attractors. 

Within equilibrium theories of statistical physics [9, 101, which describe only the 
thermodynamically stable attractors of the network, these details of the dynamics are 
not covered. Furthermore, it is hard to derive results for the transient behaviour of 
neural networks [ll-131 from exact dynamic mean-field theories [14-161. 

The neural network with pseudoinverse coupling matrix is of the 'fully connected' 
type, i.e. every neuron is connected to each other neuron. In this type of network 
longtime correlations build up and lead to a rapidly increasing number of order 
parameters in exact treatments. This renders exact approaches useless after a few 
time-steps [ 14,151. Often one considers a strongly diluted version of the neural network 
in question [2, 17, 181, i.e. a network where a given neuron is not connected to an 
extensive number of other neurons. This assumption simplifies matters drastically in 
terms of parameters to handle, but also the rich structure in the dynamic behaviour 
of the fully connected network is lost. 

In this paper we will not resort to this *diluted-network' approach. Instead, after 
careful investigation of the exact mean-field theory, we will develop a new approximate 
treatment 1191 able to reproduce the rich dynamic behaviour of the fully connected 
neural network. 

The paper is organized as follows. In section 2 we develop the exact dynamic mean 
field approach to the dynamics, which will serve as a starting point for our approximate 
theory presented in section 3. In section 4 we will discuss the dynamics of the neural 
network within the framework of our approximate treatment. In section 5 ,  our dynamic 
approach will be extended to noisy dynamics. Supplementary numerical simulations 
will be given, including large-scale numerical simulation with noisy dynamics, along 
the discussion of the analytical results of sections 4 and 5. 

2. Tbe distribution of the internal Aeldssxact  results 

We base our analysis on the probability distribution of the internal field h j ( t ) .  Since 
we are interested in the generic dynamic behaviour of the network, we will average 
over the set of p = aN stored random patterns 6: and over the initial conditions. 
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The internal fields become random variables with respect to the initial conditions 
setting 6: = 1, we have 

(3)  
1 

m ( t +  I)"? 6 ; S i ( t + l )  = 

which defines 

the averaged distribution function of the internal fields. 

functiont 
In order to calculate this probability distribution, we introduce the generating 

Here 1 is an abbreviation for the vector 1 =(&, . . , , I N ) .  The trace extends over all 
spins S j ( t )  for f > 0 and results in Z ( 0 )  being normalized to unity. 

In the case where the network has stored p = aN random, uncorrelated patterns 
5; the distribution P, (h)  becomes self-averaging and we can replace the site-average 
of (4) by the average over the couplings Jg.  Using similar methods as in [21], we show 
in appendix 1 that this average can be replaced in the limit N +cc by an average over 
a Gaussian noise p: 

r r 
[Z(l)l,-[Tr,(,,J n(dhi (O)a(  N - l ?  k i ( t ) - ( 1 - a ) S ( O )  

This generating function corresponds to a dynamic system for N uncoupled spins: 

S. ( t+  1 )  =sgn(hj(t)) ( 5 )  

hi( t )  +as,( t )  = m( t )  +x K , ? ~ ( T )  + wj( t )  ( 6 )  

f ; ( f ) =  h < ( f ) - ( l -  a ) S i ( t ) .  (7) 

(8) 

The correlations of the Gaussians wi( r )  are given by (overbars indicate averages) 

where the auxiliary variables a , ( [ )  are the random overlaps with the other patterns. 
Th-y are obtained from 

a , ( t ) = - a - ' x  K,,u,(T). (9) 

t A similar function was used in [ZO] to study the parallel dynamics of diluted networks. 
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The u+(f) are additional Gaussian noise terms with zero mean and correlations fixed 
by the projections1;(f) in the space orthogonal to the patterns 
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up(f)Us(T) = A ( f ) J ( T ) .  (10) 

1 K,,.k, . ,  = -US,, ( 1 1 )  

The kernel K,, is obtained from the equaiion 

I ' 

.with tha -e ---- r~ F..- . ,4:-l  
W 1 L 1 1  L l l r  .bYY".L"C lYl l r l lV. ,  

- m  K,, = ~ 

J W ~ ( T ) '  

Equations (5)-(12) together with (3) can be solved in principle to yield the exact 
field distribution at successive time-steps. Exact results for the first few time-steps will 
be given in appendix 2. 

The J,  average has made all spin sites equivalent, i.e. correlations between spins 
in the initial conditions are destroyed by the average over the pattern. Expanding (6) ,  
we find (dropping indices i and 1.1 and indicating time-steps through subscripts) the 
following general structure for the internal field at time f: 

(13) 

Thus h, is a sum of a Gaussian i, with a memory term Z,,, k,,S,. The Ex, are sums 
of products of the original K,T. 

The two contributions of (13) have simple physical interpretations in the cavity 
approach of MCzard e f  al [22]. Adding a new spin together with its couplings to a 
system of N spins, there will be a part of the intemal field coming from the magnet- 
izations of the unperturbed system, the Gaussian field ;,, and aresponse termz,,, k,,S,, 
caused by the polarization of the N spins due to the presence of the new spin at 
previous times T. It is this structure of the internal field that will serve as the starting 
point of our approximate treatment presented in the following section. We expect that 
the structure of (13) holds for a broad class of networks [23, 241. 

Clearly, each new time-step introduces within the exact theory a, new Gaussian 
noise i e m  w,, inciuding iis correiaiions io ihe oihet noises, and new K,, and K,-. Tne 
number of equations to solve grows rapidly with time. Carrying out these exact 
calculations becomes unfeasible after a few time-steps. All interesting questions, 
however, such as areas of attraction, remanence effects, etc., require the consideration 
of longer timescales, typically of the order of 10-30 time-steps. In order to handle 
these longer timescales, one has to develop approximate treatments with drastically 
reduced numbers of dynamic parameters. 

h, = i, + 1 k,&. 
,<I 

3. Approximating the internal f ie lds the  double-peak dynamics 

The internal field at an arbitary time is composed of a Gaussian noise term plus a 

term, which is the source of all remanence effects encountered in the dynamics of 
neural networks. It manifests itself in a pronounced double-peaked structure of the 
probability distribution of the internal fields. 

We introduce now the simplest non-Gaussian approximation-termed double-peak 
dynamics (oPD)-which is capable of approximating the exact probability distribution 

memory term, depending on the vn!ues of the spin i?! previacs !imes. !! is this memory 
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of the internal fields by replacing the exact random variable h, of (13) with 

h,=u ,+d ,S  ,-,. (14) 

Here U, is an effective Gaussian noise assumed to be uncorrelated with S,-, and the 
total effect of the memory term Z,,,&S, in the exact expression ( 1 3 )  is supposed to 
be summarized by the term d,S,-, . The Gaussian noise U, is thus not identical to i, of 
( 1 3 )  and d, is a renormalized self-coupling, not equal to K,,- , .  The probability 
distribution P , ( h )  resulting from our ansatz (14) consists of two Gaussian peaks of 
width Au:, separated by a distance Zd,. 

Using only the value of the spin one time-step before, S,-, , in the memory term 
of our ansatz, is exact for times f = 0, 1. On the other hand, for large times t, strong 
correlations exist between A'-, and S,_,, St_,, etc. They are partially taken into account 
by the renormalization of d,.  As we will show in the following, the inclusion of a 
memory term in this simple fashion is sufficient to describe the dynamics of a neural 

Our ansatz has only three parameters: x, Ah: and d,. We will derive, in the 
following, recursion relations for these dynamic quantities. Surprisingly, for models 
with symmetric interactions, i.e. J, = J+, the renormalized self-coupling d, can be 
determined self-consistently from our ansatz. 

network faithfully. - 

Multiplying (14) by LI and averaging we find for d, 

d, = S ; ( t  - l ) h j ( t )  - uj(t)S;(t - 1 )  

= N - ' x  S((t)J,S,(t - l ) - F m , - ,  . (15) 

Summing over j and using the symmetry of the matrix, the first term in ( 1 5 )  
ii 

simplifies to 

S , ( t ) h , ( t  - 1) = N - ' x  sgn(h,(t- l ) ) h j ( t -  1) 

=( P,_,(h)lhldh. 

This yields finally for d, the equation 

( l - m : - l ) d , =  P,_ , (h ) lh ldh -~m,_ ,  

(16) 

Theremaining task is to calculate the first two moments of the field distribution, 

is given 

(17) 

J 
=Ih,_,J-h;m,_, . 

- 
I. --A A L 2  A_,_. L--- .L" ^-^^:c^ *..__ "F *La ..-*... ,.A ~ -..+--- .̂... "..^,..rir c,.- n, a"" anz. "Illy lLcilC L'lC qJc;LL,,b LJY'C U1 L U G  I ITYLaI  1 1 C i L W U L h  CIILCI) VU. c u L " J " L " .  I U1 

the neural network in question, with the pseudoinverse coupling matrix, 
exactly by (cf (2)) 

- 
h , = ( l - u ) m ,  - 

and Ah: can be approximated by (see appendix 3) 

Ah:= a(1-  a)(l -m:)  
- 

The last equation is exact for (I = 4 and exhibits symmetry around a = 4 for zero overlap, 
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4. Results 

By iterating the DPD equations one directly obtains m, and the probability distribution 
P, (h) .  From P, (h)  various other quantities can be calculated, some of which will be 
presented in this section. We will discuss basins of attraction, temporal correlations 
and various remanence effects. Supplementary numerical data will serve as a validation 
of our approach. 

A first, crucial check of the validity of our ansatz is the comparison of the DPD 

distribution with the actual field distribution at a late time. In figure 1 we display 
numerical data at time f = 10 and a = f. The start overlap was m,=$. The pronounced 
double-peaked structure of the field distribution is clearly seen. The DPD prediction 
(smooth curve) and the numerical data agree quite well, 

R D Henkl  and M Opper 

0 

Figure 1. The distribution of the internal fields at 1 =IO. Shown are the prediction of the 
DPD and a distribution obtained from numerical simulations. The numerical data was 
obtained from 128-spin systems at OL = f ,  starting with an overlap of !no=+. 

We turn now to the dynamics of the neural network. It depends strongly on the 
start overlap m,. For an overview, we present in figure 2 the flow of the network 
dynamics at a =$ and various start overlaps m,. We observe fast relaxation, already 
at times f = 10-30 the dynamics have basically stopped. Note that the obtained final 

remanence effect within our DPD approach. The numerical data, which we have included 
in figure 2 for comparison with the DPD prediction, shows the same behaviour. 

To-summarize the behaviour of the network at different a-values, we display in 
figure 3 the overlap at t = 3 0  as a function of m,. For all three m,/mo curves there 
exists a critical overlap m, (the 'edge of the cliff') above which the noisy input pattem 
gets completely restored: m, + 1. This defines the boundary of the area of attraction. 

For values m, below m,, the input pattem does not get restored, and the dynamic 
of the network depends strongly on 01. At a = 0.5, the network stays close to the start 
overlaps m, as already discussed. At lower a-values, the system flows always towards 
the pattern, but gets trapped before reaching m = 1 (cf the a =0.3 curve in figure 3). 
The dynamic traps are metastable states and 2-cycles [251. 

~ ~ r a - l - . . ~  AnnnnA ~ t m n n l r .  A- thn =to+ n x r e r l n n ~  m: +hi. is +hp firrt nrr.lwmvP -f "."1aY" "'p,.." 'LL""6LJ U L I  L 1 . l  I L U I L  ",.,..ly" ... ", .>.." ..&_ &..-% "II...LI.."I ". " 
. 

1 
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l . 0 ° 7  

0.20 I : l I k  0 

E- 

O 5 10 15 20 25 30 

time t 

Figure2 Trajectories m, forseveralstaningvaiues m,ata~0.5.Thelinesaretheprediction 
of the DPD, the dots numerical data from 256-spin systems, averaged over 1024 samples 
per trajectory. 

1.0 

0.8 

0.6 

0.4 

0.2 

0 0.3 0.6 0.9 

mo 
Figure 3. The overlap as a function of the initial overlap m,. Displayed are the DPD 
predictions for a = 0.3, 0.5 and 0.7 at time I = 3 0  (full lines). The supplementary numerical 
data (broken lines) were obtained from 256-spin systems. Each data point is an average 
over 100 samples. 

At a-values larger than 0.5, a quite different dynamic behaviour is found (figure 3 
displays a = 0.7). Here, m, develops basically towards 0 or 1 only. This seems to 
indicate that in the high a-region, the traps encountered for a s 0.5 do not exist or 
are dynamically unimportant. 

This pronounced dependence of the network dynamics on the storage ratio a is 
unique to the synchronous dynamics. Under asynchronous dynamics-which we have 
investigated numerically-we find remanent overlap at all a-values, including values 
of a > 0.5 [231. 

Looking at the critical overlap m, as a function of a, we obtain the area-of-attraction 
plot (figure 4). Starting at a given a with an overlap m, above the solid line in 
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figure 4, the input pattem gets restored. For start overlaps below m,, the dynamics of 
the network depends on a as discussed. We find that the area of attraction shrinks 
quickly to a small patch around the patterns for values higher then a = 0.5. Large areas 
of attraction are only found in the low a-region, and a full basin of attraction is 
obtained only in the a + O  limit. 

R D Henkel and M Opper 

: diluted 
~ network 

0 0.2 0.4 0.6 0.8 0 

M 

Figurr l  The area of attraction for a network with the pseudoinverse coupling matrix (full 
line). Included is a heuristic rule, discussed in the text, and numerical data for the area 
of attraction (0, from [29]). The broken lines show the area of attraction at temperatures 
0.4, 0.3, 0.2 and 0.1 (from left to right). Note that no remarkable increase in the area of 
attraction is observed under noisy dynamics. 

Included in figure 4 is the prediction for the area of attraction of the 'diluted-network' 
approach. This rule works well only in the vicinity of the patterns [18]. For low 
a-values, it predicts a full area of attraction, which is wrong. The diluted theory is a 
one-parameter theory and has only the trivial fixed points 0 and 1 in the case of the 
pseudoinverse coupiing matrix. Tius, if the dynamics of the diiutea netwoil iiows 
towards the pattern in the first time-step, it converges to m = 1. This is, however, always 
the case in the low a-region. The fact that the system may get trapped in metastable 
states or 2-cycles is missed within this approach. 

Presenting the network with an input pattern with no overlap to one of the stored 
patterns, the overlap m, is not a good dynamic parameter, since it stays zero all the 
time. We can gain nevertheless insight in the temporal development of the neural 
network by considering instead the correlation function c , . , -~ .  It is given within our 
DPD approach as 

assuming m, = 0. We find (see figure 5 )  for the function 1 - c,,,-~ an approximate 
power-law decay similar to the numerical findings of Gardner ef ol [14] in the case 
of the SK model of spin glasses. From the DPD approach, the decay exponent for the 
pseudoinverse is given by =-1.3. Numerically, we find a decay exponent of = -1.4 
as compared to -! in the case of the SK model. 
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A I 

time t 
Figure 5. 1 -S , ( t )S , ( r -2 )  as a function oftime. Lines are the prediction ofthe DPO. The 
numerical data for zero temperature was obtained with system sizes of 128 (O), 256 (0). 
512 (0) and 1024 (V) spins. For temperature T=O.1, system sizes of 128 and 1024 spins 
were used. Sample sizes are 100 ( T  = 0.1) and 1024 ( T  = 0.0) samples per data point. 

Our supplementary numerical data included in figure 5 departs from the power 
law decay of 1 - c ~ . , - ~  after a certain time. This time is strongly size dependent and 
increases with system size. We think this departure from the power law behaviour can 
be viewed as a good indicator for the onset of finite-size effects in time-dependent 
quantities of fully connected networks. Note that even for quite large systems (N = 
1024) the deviation from the power law occurs at relatively short times ( t  ~ 2 0 ) .  

Another quantity which can be investigated in the case of zero overlap of the 
patterns is the remanent magnetization c , ,~ .  It is the projection of the state vector SJt)  
at  time f onto the initial state S,(O). Using a gauge transformation of the dynamics, 
we can transform S,(O) onto the all-one pattern (:= 1 and identify c, ,~  with m, in our 
usual dynamic approach. The transformation does Aot change the gauge-invariant 
quantities d,  and 7, i.e. d,  is still given by (16) and h: by (18) with m, = O .  Since the 
all-one pattern (f is, however, no longer explicitly stored in the coupling matrix J g ,  
the remaining dynamic parameter, namely x, can not be calculated as in (17). We use 
instead the unbiased estimate ii, = 0, which is consistent with the first two time-steps. 

Under this heuristic approximation, the remanent magnetization ctO factorizes in 
time, e.g. 

We find that the remanent magnetization at even time-steps has a maximum at a = 0.5, 
and falls off towards zero at IOW and high a-values (figure 6). At odd time-steps, zero 
remanent magnetization for all a-values is predicted. Thus the remanent magnetization 
of the neural network with the pseudoinverse coupling matrix should show oscillatory 
behaviour like the SK model of spin glasses under parallel update [41. 

Our numerical simulations (see, figure 6) confirm the DPD prediction for even 
time-steps, but zero remanent magnetization at odd time-steps is only found for a = f .  
At low a-values, the predicted oscillation in the remanent magnetization is not found. 
For increasing a, however, the remanent magnetization shows the expected oscillatory 
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0 

Figure 6. The remanent magnetization as a function of a. Full lines are the predication of 
the DPD. The numerical data for parallel update (*, even time-steps, 0 odd time-steps) 
shows symmetry/asymmetry around OL =OS. No symmetry is found in the numerical data 
for serial update (0). All numerical data points are averages over 1024 samples of 256-spin 
systems. 

behaviour and, in the high a-region, even a negative remanent magnetization at odd 
time-steps is observed! 

This oscillation of the remanent magnetization in the high a-region is a very 
interesting effect which could be used to design a fault-tolerant novelty detector. 
Normally, in order to decide if a noisy input pattem is one of the pattems stored in 
the neural network, one would have to check after the recall phase all p = aN overlaps 
of the pattems. Alternatively, it is sufficient just to monitor the remanent magnetization 
c,,~ for a few time-steps during the restoration process. If the remanent magnetization 
shows an oscillatory behaviour, the input pattern is currently not part of the memory. 
If the remanent magnetization assumes a constant value, the input pattem is being 
successfully restored. We expect that this effect can be enforced by appropriate network 
design. 

We have also included in figure 6 the remanent magnetization for the asynchronous 
update rule. It exhibits, as expected, a quite different behaviour than the one found 
for the synchronous update. No oscillation and no symmetry around a = 1 is observed. 
The remanent magnetization increases with a and suggests an abundance of dynamic 
traps in the high a-region. This view is supported by our observation of strong 
remanence effects in the overlap m, for high a s  under asynchronous dynamics. 

5. Dynamics with external noise 

It  is easy to extend our DPD approach to noisy dynamics. The update is now defined 
via 

Si([+ 1) =sgn(h,(t)+r,(t)) 

where r ; ( t )  are random variables considered to represent fast synaptic noise. Choosing 
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with x ; ( t )  being a uniformly distributed random variable x , ( ~ ) E  ( 0 , l )  corresponds to 
the usual Monte Carlo dynamics fyr parallel update [26], which obey detailed balance. 
The noise parameter /3 can be rygarded as an inverse temperature T: /3 = 1/ T. 

The field distribution P,(h),now also includes an average over the synaptic noises 
for times 7 < f. Since the additional noise at time t is uncorrelated to all other random 
processes, the changes in the DPD equation are minor. The overlap is now given by 
m, = tanh(ph,-,), and, in (18) and (16), one has to replace by h,-, tanh(LVt-1). 
Clearly, for p + a, the original DPD equations are recovered. 

In figure 7 we display the behaviour of the network at rr = 0.5 and for temperatures 
T equal to 0.0, 0.1 and0.2. With synaptic noise, the area of attraction becomes smaller 
for increasing temperature and the m, versus mo plot develops towards a step function 
with increasing time. In fact, if the pattern is not restored, the overlap m, always decays 
exponentially fast to zero. The time constant of the decay depends on 01 and T and 
can, however, be quite small for low temperatures. Nevertheless, the DPD indicates 
that the dynamic traps encountered in the noiseless dynamics (see section 4) play no 
role under noisy dynamics. 

/ 

/ 

0.8 a=0.5 

0.8 

E- 
0.4 

0.2 

0 0.2 0.4 0.8 0.8 1.0 

mo 
Figure 7. The overlap at time I = 30 far Several temperatures T. Included are additional 
numerical data (broken lines), obtained from networks of 256 spins, averaged over 100 
samples per data point. 

With synaptic noise the retrieval states are no longer identical to the learned patterns. 
This is clearly seen in the T = 0.2 curve of figure 7, where the retrieval state has only 
an overlap of 10.96 with the pattern. This temperature, T = 0.2, is very close to critical 
temperature T, = 0,201, where even the retrieval states are no longer dynamically stable. 

This critical temperature T, is a function of U as shown in figure 8. We find from 
our dynamic theory a strong first-order transition, as already observed within the static 
mean field approach of Kanter and Sompolinsky [lo]. Our curve lies close to their 
mean field results. Since their statistical analysis is, however, based on a different 
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0 0.2 0.4 0.6 0.8 

a 

0 

Figure 8. The critical temperature 7.. where the retrieval states become dynamically 
unstable, as a function of U (full line). For comparison, we have included the findings of 
Kanter and Sompalinsky (broken line, from [IO]). 

Hamiltonian, valid for sequential update, the results are not directly comparable to 
our dynamic treatment. Nevertheless, close agreement is observed between the two 
theories. A similar agreement between equilibrium results for parallel and serial update 
was found in [27] for the case of the Hopfield coupling matrix. 

The function 1 - c , , ~ - ~  can also be calculated for noisy dynamics within the DPD 

approach. We have included data for U = 0.5 and T = 0.1 in figure 5. Note that T = 0 
is still lower than the critical temperature T, = 0.201 at this a-value. The supplementary 
numerical data given for system sizes of 128 and 1024 spins match the DPD prediction. 
Clearly, at least at the timescales displayed here, the prominent finite-size effects found 
under deterministic dynamics are not observed with noisy dynamics. 

From our numerical simulations, we find for the remanent magnetization c,.~ an 
exponential decay. This is in contrast to the SK model of spin glasses, where we observe 
a power law decay of the remanent magnetization under parallel noisy dynamics [281. 

Finally, in figure 4, we also display the areas of attraction for a number of different 
temperature values (broken curves). For each temperature, at a given U-value, the 
lower branch of a curve gives the critical overlap m, and the upper branch 
the corresponding overlap of the retrieval states. For all mo-values between m, and 
1, the system flows finally towards the retrieval states. For all values below m,, the 
overlap decays exponentially fast to zero. 

As expected, the areas of attraction diminish with higher temperatures. This is 
directly caused by the destabilization of the patterns due to the synaptic noise. At 
intermediate temperatures, it could be possible that the corresponding destabilization 
of the metastable states would lead to an enlarged area of attraction. The increase in 
the area of attraction we observe at low a-values is, however, marginal. 

6. Conclusion 

We have thoroughly investigated the dynamics of the neural network with the pseudoin- 
verse coupling matrix, Our approach was three-fold: an exact dynamic treatment was 
used to gain insight into the structure of the internal fields of the network. This provided 
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a base for the development of our DPD approach to network dynamics. The DPD 

approach was used to obtain the main results of this paper. In addition, extensive 
numerical simulations were performed to validate our approach. 

The exact description of the dynamics of the neural network turned out to be 
impractical after a few time-steps, due to a rapidly increasing number of parameters. 
The same situation had been already encountered by Derrida and coworkers in their 
treatment of the SK and Hopfield models and seems to be characteristic for fully 
connected networks. 

Nevertheless, the exact theory yielded the general structure of the internal field: a 
sum of a Gaussin noise term and a memory term, where the values of the neurons at 
previous times appear. In developing the DPD approach it was our goal to preserve 
this specific structure of the internal fields and simultaneously keep the t h e o r y 2  
simple as possible. In our approach, only three dynamic parameters, namely x, Ah: 
and the renormalized self-coupling d, ,  have to be calculated at each time-step. We 
expect that the simplicity of our ansatz supports the application to other models as 
well, such as the Hopfield neural network or the SK model of spin glasses. An extension 
to other update rules, like soft spin dynamics, should be possible. 

All three parameters of our theory are given by equations derived from first 
principles, the DPD approach has no adjustable parameters. Within our approach we 
were able to describe faithfully the temporal development of the neural network for 
the whole CY- and temperature range. Obviously the reduction of the memory term to 
its simplest form in the DPD approach is sufficient to describe most of the dynamic 
effects in a neural network correctly. 
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Appendix 1 

In this appendix we evaluate the generating function 

in the limit N + 00. 

To facilitate the averaging over Ju, we rewrite h , ( t )  in terms of expansion coefficients 
a, ( f ) :  

hi( f ) +  a S , ( t )  = a , (  f ) +  N-”’ 2 CYa,,. 
I’>! 

To fix the internal fields completely, we have to specify the components in the space 



(Al.1) 

1 DhDh*DaDa^= n ( d h , ( t ) d ~ j ( t ) ) n d a , ( f )  n dd+(t). 

The term det( CPU)  is the functional Jacobian of our transformation, which ensures 
that Z ( 0 )  = 1, still. 

&I Pt 
I'> 1 

I it 
Averaging, we obtain, after some algebra, 
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In the limit N -* m the integrals can be evaluated via steepest descent. The integration 
variables take on the stationary point values 

1 fir.=-GF ( h ( f ) & ( T ) ) i  (A1.2) 

U,,= N-’  1 (a,Af)a,JT)h (A1.3) 

2rT=--x (Zc(f)ZF(T))2 (A1.4) 

CzT= N-’ E (J ( t ) i (T ) )?  (AIS) 

i> I 

I 

2N P 

A 

K, ,  = -N-’ x (.* lhi(T)J(t))i 

K,, = N - l x  (a,( t ) iZa(T))z ,  

(A1.6) 

(A1.7) 

Similar to the treatment of the SK model in [21], we set c,-= & = O .  p i s  is a 
self-consistent solution of equations (Al.Z)-(A1.7). Furthermore, non-zero U,, or et, 
would violate the normalization of [ Z ( Q ) ] , .  

In order to decouple the remaining part of i we introduce Gaussian random fields 
w j ( t )  and u,,(t) with zero mean and variances given by 

P 

[ W i ( f ) W ; ( T ) ] =  U,, 
and 

[%(t)UP(T)l= cw 
and obtain finally the averaged functional in the form 

Appendix 2 

In this appendix we give-for reference-results derived from our exact dynamic theory 
for the first few time-steps. 

The internal field at time time t = 0 has the structure 

h,= (1 - a) (m,+  wJ 

thus P,(h)  is a Gaussian distribution with mean 
- 
h,= (1 - m)mo 
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and variance 
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- 
Ah;= a(1 -a)(] - m i ) .  

For time f = 1, the internal field is given by 

h ,  = (1 - a ) (ml+wl+  (1  - a ) K d ( m o +  w o - S o ) ) )  
with 

and 

( 1 - a ) 3  
Ah:= a ( 1  -a)(] -m;)-(l-Za) 2(1- a)K , ,m,m,+( l  - 2a ) -  

a 

- 

Equation (26) has the structure 

h, = z t d , S o  (A2.2) 

where z is a Gaussian, uncorrelated to Sa. This structure is identical to our DPD ansatz 
and the corresponding probability distribution P , ( h )  consists accordingly of two 
uaussian UL wium YZ , separareu vy a uisvance L U , .  

Note that already at the second time-step a memory term appears in the structure 
of the intemal fields. This is a quite general result, valid for other networks as well 
[23]. Therefore, approximations to the dynamics neglecting memory terms can in 
general not be expected to yield correct results, even for the second time-step. 

For time f = 2 we have carried out the calculations only for a =$ and ma=O. The 
general structure of the field is 

h2=(1 -a)(m2+ w2)+(1 -a)2K2,(ml+ w,  - S,) 

n... -.:.- .C..~?JAL r.2 .._..-A-> L.. . A: ...-.. I I >  

+ ( I  -aI2((1 -a)K21K,a+K20)(ma+ wa-Sa). W . 3 )  

(1 - a).'C21.&+ Ayiir= 2"C,,9($(! -2a1 = 

h2 = G + 2.5,. 

Since [23] 

for a = f ,  (A2.3) simplifies to 

W . 4 )  

where G is the Gaussian composed of wI and wa. 
The structure of (A2.4) looks identical to our ansatz (14), but the correlation 

between S,=sgn((l-a)w,) and w, (note that wo and wI are correlated) leads to a 
distribution for P2(h) which is no longer double Gaussian. We find 

(l+erf(A+(h))) exp 

+(l+erf(A_(h))) exp( --=)I 1 (h+d) '  

2 AG2 
(A2.5) 

with A,( h) given by 
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The parameters of this distribution are 

d = 0.275 16 

p = 0.618 54 

AG2 = 0.091 67. 
- 
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Appendix 3 

Using the projector property of the coupling matrix one obtains 

z J&kS,(t)Sk( T) = a( i  - a) C &( r )Sk(r )  + (i - ia j h,( rj&( T j  
vk k k 

This gives 

h:(r+i)  = a(1  -a )+( l -2a)h , ( r+  1) sgn(h,(r)) 

= a( 1 -a) + (1 -2a)h,(r + 1) sgn(h,( 1 ) )  

where we have used the approximation 

__ 
This is an expansion in terms of small correlations AxAy for correlated random variables 
x and y. 

With 

Ahi(f+l)Ahj(rj 

=m-" 
= ( 1 - 2 a ) ~ - ( l - u ) ' m ( r + l ) m ( r )  

+a( 1 - a )  sgn(h,(r)) sgn(h,(r -1)) 

and 

sgn(h,(r)) sgn(h,(r -1)) - m(r+l)m(r)+= (Ihj(r)l-(l - a ) m ( r +  l)m(r)) 

we finally obtain, after some algebra, (18). Note that this equation is exact for a =OS, 
regardless of the above used approximations. 

a.(r) - 
A h f ( f )  
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